One-Page Review
16.4 (Integrals in other coordinates) March 17, 2016

• Double integral in polar coordinates:
 \[\int_{D} f(x, y) \, dA = \]

• Triple integral in cylindrical coordinates:
 \[\int_{R} f(x, y, z) \, dV = \]

• Triple integral in spherical coordinates:
 \[

Problem Set
16.4 (Integrals in other coordinates) March 17, 2016

1. Integrate the function \(f \) over the region \(D \).

 (a) \(f(x, y) = x^2 + y^2, \) \(D = \{(x, y) : 1 \leq x^2 + y^2 \leq 4 \} \).

 (b) \(f(x, y, z) = z \sqrt{x^2 + y^2}, \) \(D = \{(x, y, z) : x^2 + y^2 \leq z \leq 8 - (x^2 + y^2) \} \).

 (c) \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2}, \) \(D = \{(x, y, z) : x^2 + y^2 + z^2 \leq 2z \} \).

2. Show using spherical coordinates that the volume of the sphere of radius \(R \) is what you think it is.

3. Let \(W \) be the region within the cylinder \(x^2 + y^2 = 2 \) between \(z = 0 \) and \(z = \sqrt{x^2 + y^2} \). Calculate the integral of \(f(x, y, z) = x^2 + y^2 \) over \(W \).
Double integral in polar coordinates:
\[\int \int_D f(x, y) \, dA = \int_{\theta_1}^{\theta_2} \int_{r_1(\theta)}^{r_2(\theta)} f(r \cos \theta, r \sin \theta) \, r \, dr \, d\theta \]

Triple integral \(\iiint_R f(x, y, z) \, dV \) in cylindrical coordinates:
\[\int_{\theta_1}^{\theta_2} \int_{r=r_1(\theta)}^{r=r_2(\theta)} \int_{z=z_1(\theta,r)}^{z=z_2(\theta,r)} f(r \cos \theta, r \sin \theta, z) \, r \, dz \, dr \, d\theta \]

Triple integral in spherical coordinates:
\[\int_{\theta_1}^{\theta_2} \int_{\phi=\phi_1(\theta)}^{\phi=\phi_2(\theta)} \int_{\rho=\rho_1(\theta,\phi)}^{\rho=\rho_2(\theta,\phi)} f(\rho \cos \theta \sin \phi, \rho \sin \theta \sin \phi, \rho \cos \phi) \, \rho^2 \sin \phi \, d\rho \, d\phi \, d\theta \]
1. Integrate the function \(f \) over the region \(D \).

(a) \(f(x, y) = x^2 + y^2 \), \(D = \{(x, y) : 1 \leq x^2 + y^2 \leq 4\} \).

Answer: \(\frac{15\pi}{2} \).

(b) \(f(x, y, z) = z\sqrt{x^2 + y^2} \), \(D = \{(x, y, z) : x^2 + y^2 \leq z \leq 8 - (x^2 + y^2)\} \).

Answer: \(\frac{1024\pi}{15} \).

(c) \(f(x, y, z) = \sqrt{x^2 + y^2 + z^2} \), \(D = \{(x, y, z) : x^2 + y^2 + z^2 \leq 2z\} \).

Answer: \(\frac{8\pi}{5} \).

2. Show using spherical coordinates that the volume of the sphere of radius \(R \) is what you think it is.

SOLUTION: Integrate the constant function \(f(x, y, z) = 1 \) over the region \(\rho \leq R \) in spherical coordinates:

\[
\int_0^{2\pi} \int_0^\pi \int_0^R \rho^2 \sin \varphi \, d\rho \, d\varphi \, d\theta = \frac{4}{3} \pi R^3.
\]

3. Let \(\mathcal{W} \) be the region within the cylinder \(x^2 + y^2 = 2 \) between \(z = 0 \) and \(z = \sqrt{x^2 + y^2} \). Calculate the integral of \(f(x, y, z) = x^2 + y^2 \) over \(\mathcal{W} \).

Answer: \(\frac{8\sqrt{2}\pi}{5} \).